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SUMMARY

Doppler tracking is a common procedure which can be implemented by a multitude
of techniques. Also, it is well known that in the absence of a velocity change in the receiver,
the solution track is not unique. This paper examines the solution set of the Doppler
tracking problem, presenting several new results and placing some of the lore in a more
rigorous setting. In particular, it is shown that (in two dimensions) for an isovelocity
receiver the solution is determined up to a rotation and reflection in the receiver’s coordi-
nate system. If a single velocity change is present, then there are exactly two solutions.
Generalizations to three dimensions are also provided.
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1. INTRODUCTION

This short paper is concerned with the following classical Doppler tracking problem:
Given a source moving with constant velocity and emitting a tone of known frequency f.
and a receiver following a known track with received frequencies f; at times t;, determine
the track of the source (see Figure 1a). Assuming the data are exact, we wish to address the
question, what is the nature of the solution set of the above problem? And. specifically.
when is the solution unique? Although some of the results presented here are well known
in the lore of Doppler tracking, to the author’s knowledge a rigorous derivation has not
appeared in the literature. Other results are new.

Before proceeding, it is both mathematically and descriptively convenient to trans-
form to a voordinate system in which the receiver is at rest (Figure 1b). For this to be an
advantage, we must assume that the Doppler shift depends only on the relative velocity
V =Vg - V; of the source and the receiver, an approximation which is valid as long as
V1< ¢ where ¢ is the propagation speed of the signal. In that case. the received frequency
is given by

S ivi ..
'i_'o”+'¢_“050i) )

with 6; the angle between V and the position vector as illustrated in Figure 1b. We begin
this study with the case in which the receiver's track is a single segment of constant
velocity v .

<i

<}

(a) (b)

Figure 1. Example of source (s) and receiver (r) geometry:(a) fixed coordinate system,
(b) coordinates relative to receiver.
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2. ISOVELOCITY RECEIVER

A solution track takes the form illustrated in Figure 2. It is immediately clear that
given one solution, an arbitrary rotation of the coordinate axes will yield another: thus, the
solution set is infinite. This leads rather naturally to the question of whether the solution is
unique up to a rotation and reflection: i.c., are the speed V1, the distance to CPA (closest
point of approach) R, and ty the time of CPA, uniquely determined by the Doppler data?
Since there are three unknowns, 171, R. and tg, we suspect that three data points consisting
of measurement times t; and corresponding frequencies fj, i = 1.2.3. will determine the
solution(s). (It is clear that if the source is traveling directly away from the recciver the
solution remains indeterminate, and we therefore exclude that case: i.e.. we assume f; # fj
fori#j.)

Define the variables

(1] >3

At

- Al
(Eh-tg (2)

and

so that

(4

SOURCE

RECEIVER

Figure 2. Geometry in receiver's coordinate system for isovelocity receiver,




Equation (1) becomes

£ Ivl qQ;
= — =123 (5)
¢ \/l tq;

Afi = fi - 1‘0 =

and (3) implies

2-h _ 2.9 (6)
t3-t -9

p=

Although this formulation has increased the number of unknowns to four (q;and V). it
shall shortly enable us to ¢liminate two.

We now introduce the variables

(7)

and letting

s A 446 N
At Aty ‘

we have from (5)

1 \/x“2 + q‘;'
a ' =(sgn X)
J] +q7

Vy*+a?

1-0-q1
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or

PPN R TR VN

1+q12=a2(x2+q“;')
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“

a7 =87 (v Hap) (10 !

Eliminating q‘;' yields
) 9D - 3 ) al Bl
(J-a=)B-y~~-a~ (1 -~ )X~ =8~-a~ . (lh

Also, the substitution ot (7) into (6) produces

_ Yoy \
P=3T Xy (12)
or, after some rearranging.
R L Al i (13)
p p (] - p)..

Thus, the problem has been reduced to solving the two simultaneous quadratics (11) and
(13) for x and y where a, 8. and p are determined from the data ty. Afi‘ 1=1.2.3

The sign of q; is known from (5) which restricts the solution(s) to one quadrant
(cf. (7). The solution(s) will be the intersection(s) of a section of a hyperbola (eq. (13)) with
a hyperbola or ellipse (eq. (11)). A detailed analysis is found in Appendix A. If the Af] are
all of the same sign, the solution is unique. It is interesting to note that when this is not
true there exist cases for which there are two (but never more than two) solutions. Observe
that if there are five data points available, at Jeast three must have the same sign and the
solution of (11) and (13) is unique. Since we are assuming the data are exact. there is at
least one solution, and we conclude:

THEOREM I

For an isovelocity receiver, the source track is uniquely determined up to rotations
and reflections (with respect to the receiver’s coordinate system) by five Doppler data
points (satisfying f; # fj fori# j). Three data points suffice for this uniqueness if the
Doppler shifts are of the same sign.
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3. MANEUVERING RECEIVER

Consider the case in which the receiver’s track consists of two segments as in
Figure 1:ic.. at some point in time there is a single change in velocity from Vi to v

Let AV =V -V . then the relative velocities Vand V' (V 5 V-V satisty

V-V =-av . (14

We may use the techniques of the previous section to solve for IViand IV' 1 along
their respective segments (assuming there are at least three data points for each). The
triangle tormed by IVl (V' L and 1AV} is determined by its three sides. Since AV is a known

vector, the orientation of this triangle is determined up to a retlection (see Figure 3a). Thus,

given (Viand IV ', there are at most. two possibilities tor V=V +V Thevelocity v com-
pletes the determination of the source track since it specifies the orientation in Figure 2.

Now, assume that the conditions of Theoremn | have been met for each of the two
segments. Then IV1and I¥' ! are uniquely determined. and there are at most two solutions
(Figure 3a) tor the source track. We shall demonstrate that there are at least two solutions.

(a) {b}

Figure 3. Ilustration of possible solutions to AV =¥’ -V where A7, V1. and [V'l are known:
(a) single maneuver. (b) two maneuvers,

ey —————




THEOREM Ii %

Let the receiver's track consist of at most two isovelocity segments. Then, given one
solution to the Doppler tracking problem, there exists a distinct second solution. 1

The proot relies on the following lemma:

LEMMA 1 ‘
Given two vectors V and V5. there exists a (non-unique) vector v such that
V| -Voand V5 -V are parallel. ,

PROOF: The construction is illustrated in Figure 4a. A rigorous proof may be
supplied by the reader.

PROOF OF THEOREM IlI: We now transform to a coordinate system moving with
velocity v, such that v, -V and Vr' -V, are parallel. It is clear from Figure 4b that given
one solution (solid line), there exists a second solution (dotted line) obtained by a reflec-

tion in the receiver’s track.

S ‘ld
4
I‘
- - E
vr-vo Ve~ Vo )
\
[ e, - i r !
1
i
|
\\ ’
~

~ r

\\

\‘s
(a) (b}

Figure 4. (a) Example of Lemma 1; (b) lilustration of Theorem Il.




Combining these results with those of the previous section., we tiave:

THEOREM I1I

Let the receiver's track consist ot two segments, cach containing at least tive
Doppler points (with 1; # l"j tori #ji. Then there exist exactly two solutions to the Doppler
tracking problem.

Suppose now that there are turther mancuvers, Label the corresponding velocity
differences with a subscript 1so that AV, =V Vo Where v g is the velocity of the initial
scgment. Itis easily seen from Figure 3b thataf there exist at least two ditterences Ai’k and
AV which are not parallel. the Doppler-tracking solution must be unique (because both
v and its reflection (dotted line in Figure 3by in the triangle containing A'\"k cannot match
their counterparts in the triangle containing AV

4. EXTENSION TO THREE DIMENSIONS

The previous results generalize directly to the three-dimensional case. Once again
we transter to the receiver’s coordinates. For ar isovelocity receiver. the source track and
its perpendicular to the receiver at CPA determine a plane. In that plane the situation is
exactly that of Figure 2. only we now have spherical symmetry. Thus. the solution is
indeterminate up to two angles (the direction of Ry rather than one angle plus a retlection.
Note that the wording in Theorem ©is such that it remains valid.

When the track has two segments. Figure 3a s still valid ¢since ¥y and v~ determine
a plane): however, it may be rotated about the vector AV (Figure Sa). Thus. we find that
the set of solutions is unique up to a one parameter set ot rotations.

In the case of three segments there are at most two solutions. provided the condi-
tions of the previous section are satisfied: e, provided there exist K and ¢ such that
AV and AV are not parallel. This situation is illustrated in Figure $b. AV, und AV deter-
mine the plane of the figure. The point Q. representing one solution, does not necessarily lie
in that planc. The complete solution set is the intersection of two non-identical cireles, which
can be at most two points, ItV is coplanar with AV and ._\\—'Q (1. 1 the receiver's track lies
in a plane) there is onhy one solution. 1 the receiver’s track does not lie in a plane there is a
second solution, namely . the reflection of Q in the plane ot the paper. Finally, for four or
more segmients the solution is unique.

5. CONCLUSIONS

We have examined the solution sct of the Doppler tracking problem for a fixed
velocity source and possibly maneuvering receiver. The problem as stated involved four
unknown parameters. For a sufticient number of data points three of these parameters are
determined by one isovelocity receiver track segment. Note that one of these parameters

¥
1
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{a) {b)

Figure 5. (2) Three dimensional case. The vector Vomay hie any where on the ardle.
(b) Example with two maneuvers. The circular loci do not lie in the
same plane and meet at the single point Q.

is relative source speed. A second segment, (ie.. a mancuver). determines the tourth
parameter up to a retflection. In three dimensions. three segments are required to achieve
uniqueness up to a single retlection.

In addition to the geometric insight provided. the analysis may be used to find a
starting point for the solution of the nonlinear equations typical of least-square fits to
Doppler data. In the case of a single maneuver, there are two solutions. a picce of informa-
tion which can be critical in solving nonlinear equations. Finally. we note that the construc-
tion in Section 2 reduces the problem for exact data to the simultaneous solution of two
quadratics which is much simpler than the original problem in four unknowns.
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APPENDIX A

Given three Doppler points. we order them so that t3 < 15 < t). Thus.
0 < p < 1. We shall refer to the situation in which all three Afj are non-negative as
Case 1. Note that our conclusions concerning the solution set in this case will remain
valid for Af; < 0.1 = 1.2.3 by symmetry. The remaining possibility, where one af] differs
in sign from the other two. shall be termed Case 2. Also. from symmetry, we may assume
without loss of generality m Case 2 that t- < o<ty

CASE 1

Our assumptions imply tsee (3) and ¢7)) that
O<v<x«l (A-1)
and (eq. (8))
I<a<g . (A-2)
we Al .. . .
In addition (q )~ must be positive so that equations (10) imply

L |
X<-Z y<-§ . (A-3)

Equation (11) is therefore a hyperbola with part ot 4 single branch in the first quadrant
and similarly for equation (13) (since 0 < p< 1). In fact it is casily shown that the situa-
tion is as illustrated in Figure A-1. There are thus at most two solutions. Note. however.
that the point x = 1.y = 1 is a solution of both equations. But this point does not
satisfy (A-1). Thus. there is a maximum of one solution.

CASE 2

In this case




EQ (11)

Figure A-1. Plot of hyperbolae (11) and (13) for Case 1.
and
B<a<0 . (A-5)

This gives rise to three subcases: (a) la!> 1, 11> 1;(b) lal < 1. 181> 1 and (¢) lal < 1,
18} < 1. Note that in (b). equation (1 1) represents one qyadrant of an ellipse. Also. as in
Case 1, equations (10) put bounds on x and y since (q 1)~ must be positive. These three

subcases are pictured in Figure A-2. Note that there are at most two solutions. Examples of

zero, one, and two solutions may be constructed {17,
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Figure A-2. Plot ot equations (11) (solid line) and (13} (dashed line) tor Case 2.
(a) lal>1, 181> 1 (b) lal <1 181> 11 (¢) lal< 1. 1BI< T,
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